Math Language Routines
MLRs
The mathematical language routines were selected because they are effective and practical for simultaneously learning mathematical practices, content, and language. A mathematical language routine is a structured but adaptable format for amplifying, assessing, and developing students’ language. The routines emphasize uses of language that is meaningful and purposeful, rather than about just getting answers. These routines can be adapted and incorporated across lessons in each unit to fit the mathematical work wherever there are productive opportunities to support students in using and improving their English and disciplinary language use.
These routines facilitate attention to student language in ways that support in-the-moment teacher-, peer-, and self-assessment. The feedback enabled by these routines will help students revise and refine not only the way they organize and communicate their own ideas, but also ask questions to clarify their understandings of others’ ideas.
MLR 1: Stronger Clearer
To provide a structured and interactive opportunity for students to revise and refine both their ideas and their verbal and written output (Zwiers, 2014). This routine also provides a purpose for student conversation through the use of a discussion-worthy and iteration-worthy prompt. The main idea is to have students think and write individually about a question, use a structured pairing strategy to have multiple opportunities to refine and clarify their response through conversation, and then finally revise their original written response. Subsequent conversations and second drafts should naturally show evidence of incorporating or addressing new ideas and language. They should also show evidence of refinement in precision, communication, expression, examples, and reasoning about mathematical concepts.
MLR 2: Collect and Display
To capture a variety of students’ oral words and phrases into a stable, collective reference. The intent of this routine is to stabilize the varied and fleeting language in use during mathematical work, in order for students’ own output to become a reference in developing mathematical language. The teacher listens for, and scribes, the language students use during partner, small group, or whole class discussions using written words, diagrams and pictures. This collected output can be organized, revoiced, or explicitly connected to other language in a display that all students can refer to, build on, or make connections with during future discussion or writing. Throughout the course of a unit (and beyond), teachers can reference the displayed language as a model, update and revise the display as student language changes, and make bridges between prior student language and new disciplinary language (Dieckman, 2017). This routine provides feedback for students in a way that supports sense-making while simultaneously increasing meta-awareness of language.
MLR 3: Clarify, Critique, Correct
To give students a piece of mathematical writing that is not their own to analyze, reflect on, and develop. The intent is to prompt student reflection with an incorrect, incomplete, or ambiguous written mathematical statement, and for students to improve upon the written work by correcting errors and clarifying meaning. Teachers can demonstrate how to effectively and respectfully critique the work of others with meta-think-alouds and pressing for details when necessary. This routine fortifies output and engages students in meta-awareness. More than just error analysis, this routine purposefully engages students in considering both the author’s mathematical thinking as well as the features of their communication.
MLR 4: Information Gap
To create a need for students to communicate (Gibbons, 2002). This routine allows teachers to facilitate meaningful interactions by positioning some students as holders of information that is needed by other students. The information is needed to accomplish a goal, such as solving a problem or winning a game. With an information gap, students need to orally (or visually) share ideas and information in order to bridge a gap and accomplish something that they could not have done alone. Teachers should demonstrate how to ask for and share information, how to justify a request for information, and how to clarify and elaborate on information. This routine cultivates conversation.
MLR 5: Co-craft Questions
To allow students to get inside of a context before feeling pressure to produce answers, to create space for students to produce the language of mathematical questions themselves, and to provide opportunities for students to analyze how different mathematical forms and symbols can represent different situations. Through this routine, students are able to use conversation skills to generate, choose (argue for the best one), and improve questions and situations as well as develop meta-awareness of the language used in mathematical questions and problems.
MLR 6: Three Reads
To ensure that students know what they are being asked to do, create opportunities for students to reflect on the ways mathematical questions are presented, and equip students with tools used to actively make sense of mathematical situations and information (Kelemanik, Lucenta, & Creighton, 2016). This routine supports reading comprehension, sense-making, and meta-awareness of mathematical language. It also supports negotiating information in a text with a partner through mathematical conversation.
MLR 7: Compare and Connect
To foster students’ meta-awareness as they identify, compare, and contrast different mathematical approaches and representations. This routine leverages the powerful mix of disciplinary representations available in mathematics as a resource for language development. In this routine, students make sense of mathematical strategies other than their own by relating and connecting other approaches to their own. Students should be prompted to reflect on, and linguistically respond to, these comparisons (for example, exploring why or when one might do or say something a certain way, identifying and explaining correspondences between different mathematical representations or methods, or wondering how a certain concept compares or connects to other concepts). Be sure to demonstrate asking questions that students can ask each other, rather than asking questions to “test” understanding. Use think alouds to demonstrate the trial and error, or fits and starts of sense-making (similar to the way teachers think aloud to demonstrate reading comprehension). This routine supports metacognition and metalinguistic awareness, and also supports constructive conversations.
MLR 8: Discussion Supports
To support rich and inclusive discussions about mathematical ideas, representations, contexts, and strategies (Chapin, O’Connor, & Anderson, 2009). Rather than another structured format, the examples provided in this routine are instructional moves that can be combined and used together with any of the other routines. They include multimodal strategies for helping students make sense of complex language, ideas, and classroom communication. The examples can be used to invite and incentivize more student participation, conversation, and meta-awareness of language. Eventually, as teachers continue to demonstrate, students should begin using these strategies themselves to prompt each other to engage more deeply in discussions.